

Falcon: Fair Active Learning using Multi-armed Bandits

Ki Hyun Tae¹, Hantian Zhang², **Jaeyoung Park¹**, Kexin Rong², Steven Euijong Whang¹

¹KAIST, ²Georgia Institute of Technology,

Fairness in Machine Learning: Do Not Discriminate

- ML models must be developed responsibly
- We focus on fairness

A.I. Bias Caused 80% Of Black Mortgage Applicants To Be Denied



Updated Sep 3, 2021, 09:35am EDT

Forbes, 2021

Bias in the Mortgage

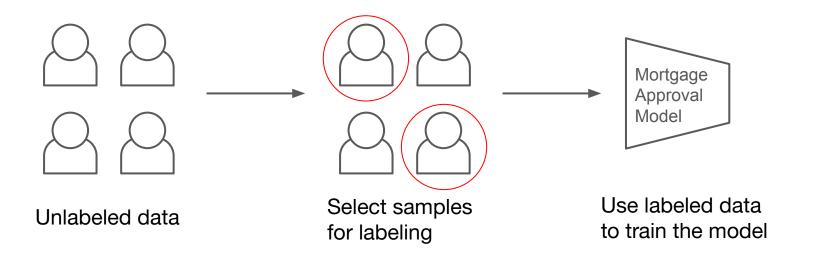
Discrimination and inequalities persist

Approval Process

By DANIEL THOMAS MOLLENKAMP Updated August 18, 2022

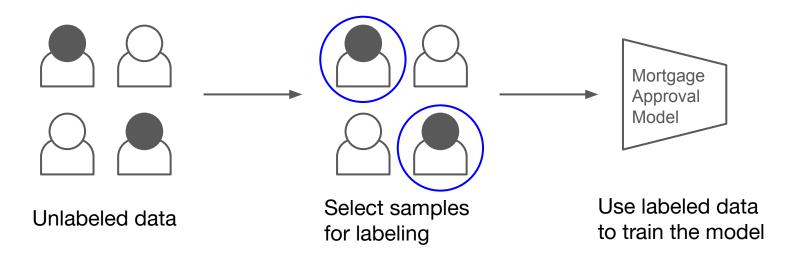
Traditional Active Learning

- Select samples from unlabeled data for labeling to maximize accuracy
- Minimize the data to label as labeling involves expensive human resources



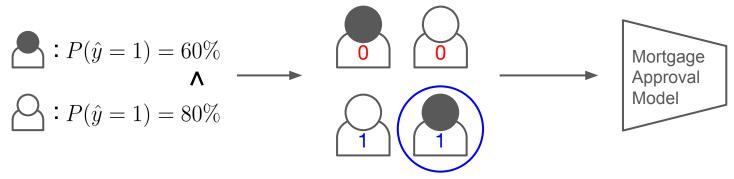
Active Learning for Fairness

- Key idea: we would like to label the samples that lead to better fairness
 - Targeted labeling can improve fairness



Main Challenge: Lack of Labels

In the example below, we need to obtain samples with (attribute=black, label=positive).

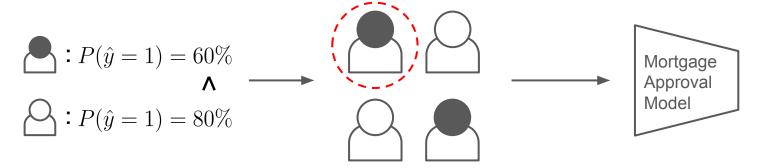


Fairness criteria :same positive prediction rate

(attribute=black, label=positive) improve the fairness level

Challenges in Fair Active Learning

Labeling the wrong samples with (attribute=black, label=negative)
 decreases the positive prediction rate of black group and thus worsens the fairness level



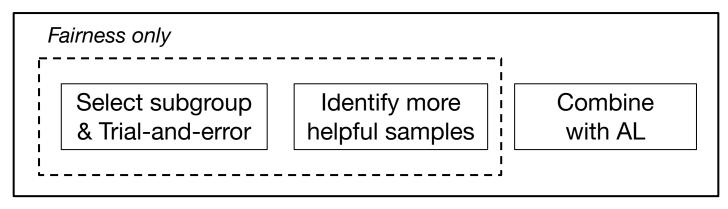
Fairness criteria :same positive prediction rate

(attribute=black, label=negative) worsen the fairness level

Falcon

- Select subgroups to label (e.g., (attribute=black, label=positive))
 & use a trial-and-error method to manage unknown ground-truth labels
- Identify more helpful samples from the subgroup using adversarial MABs
- Balances fairness and accuracy by alternating its selection with traditional AL

Falcon



Subgroup Labeling for Fairness

- Key strategy: increase the labeling of specific subgroups
 - Subgroup is defined using sensitive attributes and labels, e.g., (attribute=black, label=positive)

Step 1

Select subgroup & Trial-and-error

Identify more helpful samples

Combine with AL

Subgroup Labeling for Fairness

- Key strategy: increase the labeling of specific subgroups
 - Subgroup is defined using sensitive attributes and labels, e.g., (attribute=black, label=positive)

Demographic Parity (DP): Similar positive prediction rate across sensitive groups

$$p(\hat{y} = 1) = 60\% < p: p(\hat{y} = 1) = 80\%$$

The goal is to close this gap

Subgroup Labeling for Fairness

- Key strategy: increase the labeling of specific subgroups
 - Subgroup is defined using sensitive attributes and labels, e.g., (attribute=black, label=positive)

Demographic Parity (DP): Similar positive prediction rate across sensitive groups

$$P(\hat{y} = 1) = 60\% < 2 : p(\hat{y} = 1) = 80\%$$

⇒ More

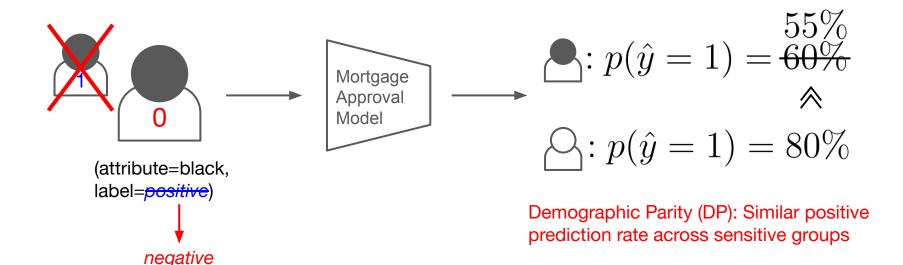
or

are needed

(attribute=black, (attribute=white, label=positive) label=negative)

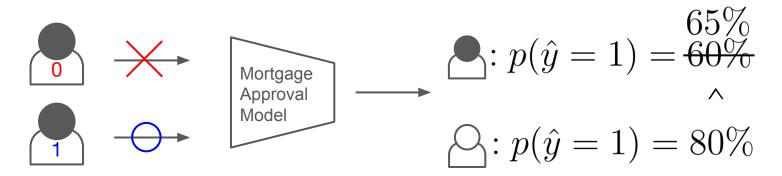
Unknown Ground Truth Labels

- However, ground truth labels are not available in an AL setting
- Adding samples with undesired labels can negatively affect fairness



Solution: Trial-and-error Strategy

- Select samples in the target sensitive group to label, but postpone using them in model training when they turn out to have undesirable labels
- Postponing undesired samples avoids worsening fairness



Demographic Parity (DP): Similar positive prediction rate across sensitive groups

Identify More Helpful Samples for Fairness

• Improve basic trial-and-error by choosing samples that are more likely to increase a target group's accuracy while also having the desired label

Step 2

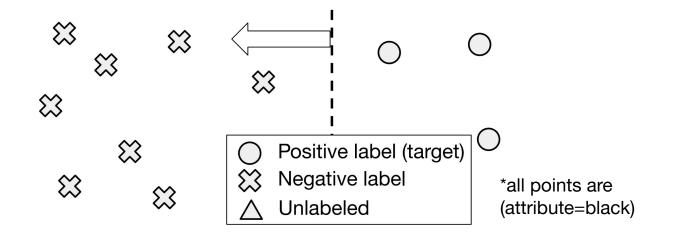
Select subgroup & Trial-and-error

Identify more helpful samples

Combine with AL

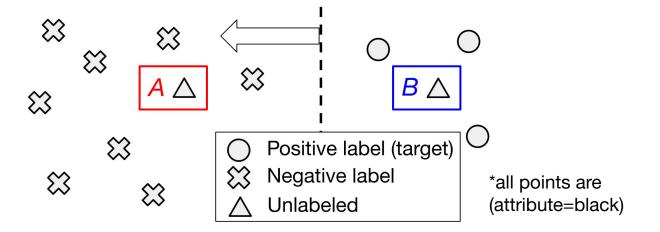
Trade-off b/w Informativeness and Postpone Rate

- Key observation: the more informative a sample is for improving the target group's positive prediction rate, the less likely it is to have the target label
 - Suppose the target subgroup is (attribute=black, label=positive)
 - To increase the positive prediction rate, the decision boundary must be shifted to the left



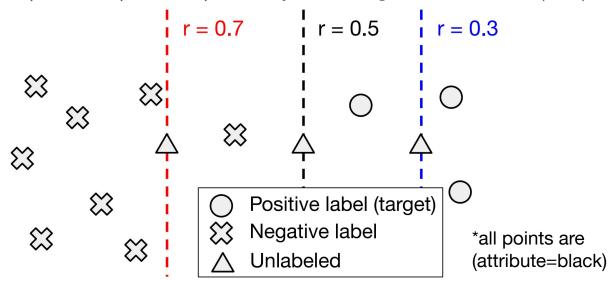
Trade-off b/w Informativeness and Postpone Rate

- Key observation: the more informative a sample is for improving the target group's positive prediction rate, the less likely it is to have the target label
 - Suppose the target subgroup is (attribute=black, label=positive)
 - To increase the positive prediction rate, the decision boundary must be shifted to the left
 - Sample A compared to B: better target group PPR, but lower chance of positive label



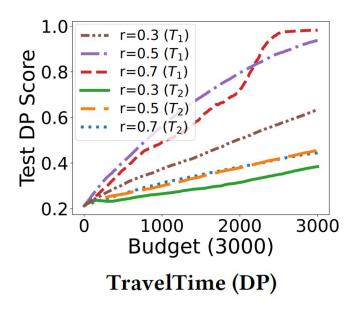
Policy: Amount of Risk Taking

- The more "risk" we are willing to take for finding an informative sample, the less likely it has the desired label
- We capture this risk taking as a policy "r" = c for each target group
 - Select a sample whose predicted probability for the target label closest to (1 c)



Challenge: Optimal Policy Changes Over Time

- The optimal policy varies as we label more samples
- Need an adaptive algorithm to identify the optimal policy



Multi-armed Bandit (MAB) for Policy Search

- Arm: Policy
- Reward: Fairness improvement
- Unlike traditional MABs, the rewards do not follow time-invariant distribution
- Thus we use adversarial MABs*

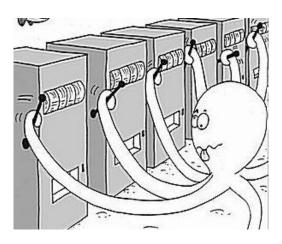


Image source: Microsoft Research

Combine with AL for Accuracy

- Alternates between fair and accurate labeling probabilistically
 - o Improves fairness with λ probability and accuracy with (1λ) probability
 - A higher λ indicates better fairness
- Does not require any modifications of the AL methods

Select Subgroup & Trial-and-error

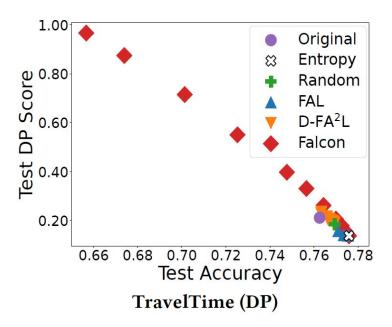
Identify more helpful samples

Combine with AL

Step 3

Accuracy and Fairness Results

- Falcon shows the best accuracy and fairness trade-off
 - Also, similar results for other datasets, fairness measures, and ML models



Running Time Results

Falcon is much faster than the fair AL baselines

Datasets	Avg. Running time (sec)				
	Entropy	Random	FAL	D-FA ² L	FALCON
TravelTime	139	91	1,420	179	126
Employ	114	76	1,411	140	98
Income	244	149	1,965	290	205
COMPAS	6.1	5.5	153	12	5.9

Summary

- Falcon selects samples to label for improving fairness and accuracy
 - Selects subgroups to label and handles unknown ground truth labels using trial-and-error
 - Automatically selects the best sampling policy using adversarial MABs
 - o Balances fairness and accuracy by alternating its selection for fairness with traditional AL

Paper Code

Summary

- Falcon selects samples to label for improving fairness and accuracy
 - Selects subgroups to label and handles unknown ground truth labels using trial-and-error
 - Automatically selects the best sampling policy using adversarial MABs
 - o Balances fairness and accuracy by alternating its selection for fairness with traditional AL

Paper Code

